6-5 Exponential Growth and Decay

EXPONENTIAL GROWTH

$$y = a(1+r)^t$$

 $y = 0$ uput /final amount
 $0 =$ starting amount/initial value
 $1 =$ growth rate (* decimal)
 $1 =$ input /time
 $1 + 1 =$ growth factor

EXAMPLE:

The original value of a painting is \$9,000 and the value increases by 7% each year. Write an exponential growth function to model this situation. Then find the painting's value after 15 years.

$$y = \alpha(1+n)^{4}$$

 $y = 9000(1+0.07)^{4}$
 $y = 9000(1.07)^{15}$
 $y = 424,831.28$

EXPONENTIAL DECAY

$$y = a(1-r)^t$$

 $y = \text{output / final amount}$
 $a = \text{starting amount / initial value}$
 $r = \text{decay rate (* decimal)}$
 $t = \text{input / time}$
 $(1-r) = \text{decay factor}$

EXAMPLE:

The population of a town is decreasing at a rate of 3% per year. In 2000 there were 1700 people. Write an exponential decay function to model this situation. Then find the population in 20012.