5-1 Systems of Equations & Solving by Graphing

Q: How can you find the solution of a system of linear equations by graphing?

☐ System of Linear Equations: a set of two or more linear equations containing two or more variables.

Ex: {y=4x+3}
{2x+8y=12}

☐ Solution of a System of Linear Equations: an ordered pair that satisfies each equation. It must make BOTH equotions true.

IDENTIFYING SOLUTIONS TO SYSTEMS OF EQUATIONS

Tell whether the ordered pair is a solution of the given system.

1.
$$(5, 2)$$
 $\begin{cases} \frac{2}{5}x - y = 0 \\ 3x - y = 13 \end{cases}$
2. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
2. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
2. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
2. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
2. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
2. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$
3. $(-2, 2)$ $\begin{cases} x + 3y$

2. (-2, 2)
$$\begin{cases} x + 3y = 4 \\ y = x + 2 \end{cases}$$

 $x + 3y = 4$
 $-2 + 3(2) = 4$
 $-2 + 6 = 4$
 $-2 + 6 = 4$
 $y = x + 2$
 $y = x +$

3. (1,3)
$$\begin{cases} y = -2x + 5 \\ y = 2x + 1 \end{cases}$$

 $y = -2x + 5$
 $y = 2x + 1$
 $y = -2x + 5$
 $y = 2x + 1$
 $y = -2x + 5$
 $y = 2x + 1$
 $y = -2x + 5$
 $y = 2x + 1$
 $y = -2x + 5$
 $y = 2x + 1$
 $y = -2x + 5$
 $y = 2x + 1$
 $y = -2x + 1$

Scanned by CamScanner

Solving a System of Equations BY GRAPHING

$$y=mx+b$$
Graph all equations on the same coordinate plane.

Example:

Solve the system by graphing.

$$\begin{cases} 4y - x = 16 \\ y = \frac{3}{2}x - 1 \end{cases}$$

$$\mathbf{1} = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}$$

$$\mathbf{1} = \frac{1}{4}$$

CHECK:

$$4y-x=16$$
 $y=\frac{3}{4}x-1$
 $4(6)-(4)=16$
 $5=\frac{3}{4}(4)-1$
 $30-4=16$
 $5=6-1$
 $16=16$
 $5=5$